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Abstract—Satellite Synthetic Aperture Radar (SAR) systems
can achieve vertical resolution by using multiple platform passes
to create a synthetic aperture in the elevation direction. Often the
distribution of the orbits is not optimal for traditional forms of
tomographic processing. Due to the random nature of the orbit
positions and the relatively small number of measurements, a
compressive sensing (CS) approach for achieving vertical reso-
lution is utilized to determine the likely achievable performance
of RADARSAT-2 (R2) in tomographic operation.

I. INTRODUCTION

Multi-pass Interferometric Synthetic Aperture Radar (In-
SAR) systems utilize coherent data collections from multiple
passes to provide an estimate of the terrain elevation at
each range-azimuth pixel in the SAR image. The inherent
assumption in interferometric processing is that only one
dominant scatter exists within each range-azimuth pixel. SAR
Tomographic techniques provide elevation resolution within
the range-azimuth pixel so the vertical structure can be re-
solved. In the multi-pass geometry a vertical synthetic aperture
can be created to provide elevation discrimination in much
the same way that conventional SAR systems use a synthetic
aperture to achieve azimuth resolution.

The creation of a vertical synthetic aperture differs for
the typical SAR configuration in two major aspects. First,
the number of samples used to synthesize vertical aperture
is typically quite small in comparison to the creation of an
azimuth synthetic aperture. Second, the acquisition positions
of the satellite platform are not uniformly sampled in the
spatial domain. These conditions make it difficult to apply
traditional Fourier based focusing techniques. Instead, spe-
cialized procedures to deal with the ill-conditioned problem
need to used. Some of the techniques which have been applied
to both the multi-baseline In-SAR and tomographic problems
include the truncated SVD [1], [2] and non-linear least squares
(NLS) [2] approaches. More recently compressive sensing
[3] approaches have been applied [4]–[7]. In this paper,
orbital information from RADARSAT-2 is used to measure
the capability to resolve two targets in a range/azimuth pixel
utilizing a compressive sensing approach under various signal
to noise ratios.

II. SIGNAL MODEL

Consider the satellite the multi-pass satellite SAR geometry
shown in Fig. 1. The satellite sensor passes through N
different orbits. The u axis is taken perpendicular to the
line of sight. The position of each satellite pass is given
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Figure 1. Multi-pass satellite tomographic SAR geometry. Black dots denote
true satellite positions Red x’s denote projection of satellite position onto u
axis. Case for N = 6, m = 4.

by Sn, n = 1, . . . , N . The projection of each satellite
position onto the u axis is given by un, n = 1, . . . , N . and
rn = Sn− un.The length of the perpendicular baseline L⊥ is
given by |uN − u1|. Any scatterers located along the s axis,
denoted as sm, will appear in the same range-azimuth cell of
the SAR image. Fig 1 shows four discrete point are along the
s axis as an example i.e., m = 1, . . . 4. The range between
the radar and the ground/elevation point s is given by

R(u) =

√
(R0 + rn)

2
+ (u− s)2,

in which R0 is the slant range from the centre of the array to
the ground. Since u and s will be small in comparison to R0,
the previous expression can be approximated by
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The corresponding two-way phase delay associated with this
range is
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where λ is the radar operating wavelength and k = 2π/λ is the
corresponding wave number. We denote the reference range as

Rref (u) =

√
(R0 + rn)

2
+ u2. The phase difference between

the return signal of the radar and the reference range is given
by
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This process of removing the phase associated with a fixed tar-
get reference point across the synthetic aperture is commonly
used in Spotlight SAR signal processing and is often referred
to as deramping [8].

Let gn denote the signal in a fixed azimuth and range pixel
at the nth satellite pass after removal of the phase due to
the reference range. Then gn consists of contributions from
scatterers located along the s axis and is given by

gn =

ˆ
γ(s)ej2kuns/R0ds (4)

where γ(s) represents the scattering strength along the s axis.
The received signal for all the satellite passes can be written in
vector format by letting g = [g1, g2, . . . , gN ]T . By sampling
at points sm (m = 1, . . . M) along the s axis we can form a
discrete model of the received signal given by

g = [a(s1), a(s2), . . . ,a(sM )]γ

= Aγ,
(5)

where
γ = [γ(s1), γ(s2), . . . , γ(sM )]T ,

a(sm) =
[
ej2k

u1sm
R0 , ej2k

u2sm
R0 , . . . , ej2k

uNsm
R0

]T
, (6)

and un denotes the position of the nth satellite along the u
axis as shown in Fig. 1. Note that in Fig. 1 M = 4 but it is
typically much higher in practice.

The tomographic problem is to determine γ, the vector
of scattering coefficients, from the measurement vector g.
The standard approach is the least squares solution where the
estimate of the true γ is given by

γ̂ = argmin
γ

‖Aγ − g‖22 , (7)

where γ̂ denotes the estimate. When N < M, the problem is
under-determined, so no unique solution exists and the mini-
mum norm solution is often uninformative. The compressive
sensing approach is to regularize the problem through the use
of the �1 norm on the solution vector. The �1 norm promotes
sparsity in the solution vector so that only a few dominant
components exist [9], [10]. Now the estimate is given by the
solution to the following

γ̂ = argmin
γ

λ ‖γ‖1 + ‖Aγ − g‖22 , (8)

Parameter Value
Wavelength 0.055 m

Range Resolution 3 m
Nominal Orbit Altitude 798 km
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Figure 2. RADARSAT-2 Satellite simulation geometry for 8 orbits. Elevation
= 65.32◦. Perpendicular aperture 439 m.

where λ is a pre-selected weighting factor that provides a
trade-off between the sparsity of the solution vector and fitting
the data model. The optimization problem posed in (8) is
convex and a number of algorithms have been developed to
solve this problem. The Fast Iterative Shrinkage Thresholding
Algorithm (FISTA) algorithm is used to generate the results
in this paper [11].

III. SIMULATION RESULTS

For the simulations, the historical ephemeris data for
RADARSAT-2 was used. Eight coherent satellite passes over
the the area of Ottawa, Canada are used to create the synthetic
aperture. Note that for RADARSAT-2 coherent passes occur
every 24 days. The first pass takes place on June 17, 2013.
The mean elevation angle is 65.32◦ and the mean distance
to the satellite is 868 km. Figure 2 illustrates the variation
of the satellite geometries over the eight passes. The blue x’s
show the actual satellite position, while the the red circles
indicate the projection of these positions onto the perpendic-
ular baseline. In this geometry the size of the perpendicular
baseline is 439 m. Principal Component Analysis (PCA) of
the distribution of satellite passes is used to generate the
ellipse and illustrate the variance of the orbital passes in the
range and altitude directions. Table I lists the main operational
parameters for RADARSAT-2.

The CS approach is used to determine to solve for the
elevation estimates of a range/azimuth pixel containing two
targets. In order to determine the effective resolution of the
CS approach one target is kept at a constant elevation of
0 meters, while the second target starts at an elevation of
80 meters and is then decreased in 1.9 meters steps. The
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Figure 3. Estimated elevation positions, SNR=20 dB. Red o’s denote
estimated positions of the target at 0m elevation. Blue x’s denote the estimated
position of the second target.
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Figure 4. Standard deviation of the elevation estimates, SNR=20 dB. Red o’s
denote standard deviation of the target elevation estimates for the target at 0m
elevation. Blue x’s denote standard deviation of the second target’s elevation
estimates.

sensing matrix consists of vectors corresponding to elevations
uniformly separated by 0.55 meters, so there is an induced
modeling error. This type of error is likely to occur in practice
since the true elevations will not be know a priori. For each
elevation position of the target 100 trials are conducted.

Figure 3 illustrates the mean of the estimated positions as
a function of the second target’s elevation when the SNR for
each target is 20 dB. Examination of Figure 3 reveals that
the mean estimates are consistent with the true elevations of
the targets, although there is some deviation from the true
value even when the targets are well separated. Figure 4 shows
the standard deviation of the estimates as a function of the
true height of the second target. In general the spread of the
estimated elevations is less than than 1 m and the deviation
tends to increase as the two targets get closer in elevation.

In some cases when the targets are closely positioned there
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Figure 5. Probability of detection of 2 distinct targets. SNR=20dB.
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Figure 6. Estimated elevation positions, SNR=10 dB. Red o’s denote
estimated positions of the target at 0m elevation. Blue x’s denote the estimated
position of the second target.

is only a single detected target in the solution vector and this
peak is assigned as the estimate for both targets. This can
actually cause the error deviation to decrease. Even at this rela-
tively high SNR there are spurious peaks in the error deviation
of the target even though the targets are well separated e.g.
22m and 48m. Figure 5 illustrates the probability of detection
of two distinct targets as a function of the elevation separation
of the two targets. When both targets are assigned to the same
elevation position in the solution vector this is treated as an
error.

Figure 6 shows the mean of the estimated positions as
a function of the second target’s elevation, when the SNR
for each target is 10 dB. Again, the mean estimate of the
target elevations are mostly consistent with the true eleva-
tions, however there do appear to be a few elevations where
the estimate is slightly biased. Figure 7 shows the standard
deviation of the estimates as a function of the true height of
the second target. Due to the decreased SNR the deviation of
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Figure 7. Standard deviation of the elevation estimates, SNR=10 dB. Red o’s
denote standard deviation of the target elevation estimates for the target at 0m
elevation. Blue x’s denote standard deviation of the second target’s elevation
estimates.
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Figure 8. Probability of detection of 2 distinct targets. SNR=10dB.

the estimates has increased from the 20 dB SNR scenario and
there are more elevations at which spuriously high deviations
occur e.g. in the 40-50 m elevation range. Figure 8 depicts
the probability of detection of 2 distinct targets when the
SNR=10 dB. Comparison of Figure 8 and Figure 5 reveals that
as the SNR decreases the target elevation separation distance
increases to 8m to achieve a 95% detection rate. Figure 8 also
reveals that even at large elevation separation distances the
detection rate can experience large fluctuations e.g. when the
target separation is 48m.

Figure 9 shows the mean of the estimated positions as a
function of the second target’s elevation, when the SNR for
each target is 5 dB. Figure 10 shows the standard deviation
of the estimates as a function of the true height of the
second target. Figure 11 depicts the probability of detection
of 2 distinct targets when the SNR is 5dB. At this SNR
the detection rate displays wide fluctuations over the target
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Figure 9. Estimated elevation positions, SNR=5 dB. Red o’s denote estimated
positions of the target at 0m elevation. Blue x’s denote the estimated position
of the second target.
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Figure 10. Standard deviation of the elevation estimates, SNR=5 dB. Red o’s
denote standard deviation of the target elevation estimates for the target at 0m
elevation. Blue x’s denote standard deviation of the second target’s elevation
estimates.

separation distances from 10 - 60m.

IV. CONCLUSIONS

The use of compressive sensing techniques can provide ele-
vation resolution for tomographic processing of RADARSAT-
2. The compressive sensing approach implicitly assumes the
presence of a small number of targets in the range/azimuth
cell under evaluation. The method works well for strong per-
sistent targets, but further investigation is required to address
decorrelation effects due to temporal/atmospheric variations
and satellite position errors. With the compressive sensing
approach many additional factors need to be investigated for
practical tomographic operation e.g. the choice of the number
and spacing of the vectors a(sm) and the determination of the
λ parameter on a pixel by pixel basis.
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Figure 11. Probability of detection of 2 distinct targets. SNR=5dB.

REFERENCES

[1] G. Fornaro, F. Serafino, and F. Soldovieri, “Three-dimensional focusing
with multipass sar data,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 41, pp. 507–517, Mar. 2003.

[2] X. X. Zhu, Spectral Estimation for Synthetic Aperture Radar Tomogra-
phy. Masters, Technische Universität München, Earth Oriented Space
Science and Technology – ESPACE, Sept. 2008.

[3] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509,
2006.

[4] A. Budillon, A. Evangelista, and G. Schirinzi, “Sar tomography from
sparse samples,” in Geoscience and Remote Sensing Symposium,2009
IEEE International,IGARSS 2009, vol. 4, pp. IV–865–IV–868, July 2009.

[5] A. Budillon, A. Evangelista, and G. Schirinzi, “Three-dimensional sar
focusing from multipass signals using compressive sampling,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 49, pp. 488–499,
Jan. 2011.

[6] X. X. Zhu and R. Bamler, “Sparse reconstrcution techniques for sar
tomography,” in 2011 17th International Conference on Digital Signal
Processing (DSP), pp. 1–8, 2011.

[7] X. X. Zhu and R. Bamler, “Tomographic sar inversion by l1-norm
regularization - the compressive sensing approach,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 48, pp. 3839–3846, Oct. 2010.

[8] M. Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB
Algorithms. New York: Wiley-Interscience, 1 edition ed., Apr. 1999.

[9] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on Pure and
Applied Mathematics, vol. 59, pp. 1207–1223, Aug. 2006.

[10] R. Baraniuk, “Compressive sensing,” IEEE Signal Processing Magazine,
vol. 24, pp. 118–121, July 2007.

[11] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, p. 183, 2009.


